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An efficient boundary element method was developed to study
cathadic protection of a well casing in a formation with layered con-
ductivities. Even though the electrical potential in soil is governed by
the linear Laplace equation, electrochemical reactions at the well
casing introduce complex, nonlinear boundary conditions. Furthermaore,
the comgplexity of boundary geometries makes the numerical computa-
tion nomtrivial. Use of Green’s function atlows a general solution of the
Laplace equation to be expressed in the form of a Fredholm integral
equation of the second kind. The present formula employs a fundamen-
tal solution that eliminates the discretization of the top ground surface.
Because the potential distribution within the well casing metal greatly
affects the current distribution, the model includes the potential change
along the axial direction of the well casing. A Newton-Raphson
method was employed to estimate iteratively the current distribution at
the well casing, and then the integral equations of the boundary
element method were numerically sclved by a collocation technigue.
This boundary element model was used to investigate the effects of soil
conductivities, well casing geometry, well casing resistivity, and the
focation of a current source on the current and potential distribution at
the well casing.  © 1993 Academic Press, Inc.

1. INTRODUCTION

Cathodic protection is often employed (o prevent exter-
nal corrosion of oil production well casings. The negative
terminal of a dircct current power source is connected to the
casing at the wellhead, while the positive terminal is con-
nected to an auxiliary buried structure called the anode or
groundbed. Current is discharged from the anode, flows
through the soil, and is picked up on the well casing. The
distribution of current density on the well casing delermines
the degree of corrosion protection. Current flow through the
soil is governed by Laplace’s equation, while electrochemi-
cal kinetics describes the current discharge at the anode and
_ pickup at the cathode.

* The total current required to protect a casing cannot be
predicted with any certainty {rom simple rules of thumb, nor
can surfzce measurements alone determine the level of
protection at the bottom of the casing. The actual protec-
tion level along the welt bore can be directly measured with
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downhole tools, but this is expensive both in direct cost and
in lost production.

Several methods have been used to model well casings to
predict current requirements. Pope [1] first used a simple
electrical transmission line model assuming that the soil
resistivity and electrochemical kinetics generate a constant
attenuation coeflicient, While this assumption has been used
and is often reasonable for well-coated horizontal pipelines,
it is rarely accurate for a well casing. Schremp and Newton
[2] modified this earfy model to include a semi-empirical
relationship between attenuation coefficient and depth.
More recently Dabkowski [3] improved the model by
calculating the attenuation coefficient for each segment
from the local soil conductivity, local electrochemical
kinetics, and the geometry of the casing-groundbed system.

Because ail the phenomena of interest in cathodic protec-
tion occur on surfaces, the boundary element method is a
natural approach to this problem. Applications of the
boundary element method have been commeonly limited to
homogeneous physical systems with linear governing equa-
tions. Nevertheless, it has been successfully applied in a
variety of fields, for exampie, solid mechanics [4, 5], low-
Reynolds-number fluid motion [6, 7], ground water flow
[87, and well productivity calculation [97. The boundary
element method has three distinct advantages over the con-
ventional finite-difference or -element method in calculating
an electrical field. First, the potential strengths at the
boundary elements are directly calculated. Therefore, only
the boundaries must be discretized, which renders great
flexibility and convenience in describing boundary surfaces.
Secondly, the order of spatial dimensionality for the flow
problem is reduced: three-dimensional problems become
two-dimensional (surface) integral equations, and two-
dimensional problems become one-dimensional (line)
integral equations. Consequently, the boundary element
method is more efficient in computation and requires less
memory storage than a finite-difference or -element method.
Finally, the potential strengths at the boundaries are not
subject to cumulative errors through a three-dimensional
grid. Because the boundary conditions for this problem are
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quite stiff, small errors in potential strength incur large
errors in current density distribution.

The boundary element method has been used extensively
for modeling corrosion of structures in sea water [10-13].
In these previously modeled systems, the resistivity of the
corrosive medium is constant. This paper extends the use
of the boundary element method to systems where the
resistivity is layered and also incorporates realistic, non-
linear boundary conditions at the well casing into iterative
computation. The present formulation employs the Green'’s
function appropriate to the planar ground surface. Further-
more, the algorithm is designed to solve a large system
efficiently.

In Section 2 a general solution of Laplace’s equation is
formulated in terms of boundary integrals, and the non-
linear boundary conditions at the well casing are specified.
Section 3 describes an iterative numerical scheme to solve
this nonlinear problem. In Section 4 some numerical exam-
ples are included to discuss the effects of conductivities of
soil, well casing geometry, well casing resistivity, and the
location of the current source on cathodic well casing
protection. Finaily, conclusions follow in Section 5.

2, FORMULATION

A schematic diagram of the cathodic well casing protec-
tion system is illustrated in Fig. 1. The groundbed (anode)
is small compared with the well casing and is considered
to be a point current source at Xq = (X, Vo, Zo). Note that
the conductivity of the well casing is generally much larger
than that of soil (e.g., 10°[1/2m] vs. 0.1{1/£2m]) and the
well casing length is several orders of magnitude greater
than the casing diameter (e¢.g., 1000 [/] vs. 0.16 [m]). The
boundary integral equations for an electrical field in a semi-
infinite domain with layered conductivities are derived
because the top ground surface is planar.
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FIG. 1. A schematic diagram of cathodic well casing protection.
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2.1. A4 General Solution for Elecirical Field in a Semi-infinite
Domain

The electrical current is proportional to the potential
gradient,
i=—a Vg, (1)
where i is the current, ¢ is the formation conductivity, and
¢ is the potential.
The equation of current conservation is given by

V.i=of(x). )

Here, f'is a source term in the domain.
The divergence of Eg. (1) yields Laplace’s equation for
potential,

V3= — f(x). (3)

Note that the potential field is solved in a semi-infinite
domain, and the boundary condition at z=10 (the soil sur-
face) includes i-n=0. Thus, instead of the usual Green’s
function for Laplace’s equation [14], we use a special
fundamental solution that makes the general solution
automatically satisfy the boundary conditions at z=0
(a similar approach was taken for a Stokes problem in
Ref. [157).

1 1 1
q(x, Y)=§[]X*Y|+|X—2xze3—)’|]- ®

Here, x and y are position vectors. The components of x in
the xyz coordinates are given by (x,, x5, x;) and the unit
vectors are denoted by ¢, e,, and e,. The fundamental
solution is equivalent to the sum of the solutions due to
point sources at x and x — 2x,e;, which will eliminate the
discretization of the plane at z=0. Using Green’s thercom,
a general solution of Eq. (3) can be readily expressed in the
form of a Fredholm integral equation of the second kind,

800 =[] s 1) ¥, + [[ 9, 9 2 3 a5,

~ ([ V9. v)-ng(y) ds,, (5)

where

(x—y)
x—y

V,4(x, y)=;§;[ (x_2x3e3-”]. (6)

3
X —2x5e;—y|

The S in the integral is the boundaries of the domain, V, and
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n is an exterior normal at the boundaries of V. The current
is easily obtained as the gradient of Eq. (5),

Li)= [[[ v yrrav,

g
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+{[v.Vax v 01 as,. ()
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The two surface integrals on the right-hand sides of Eq. (5)
are known as the single-layer and double-layer potentials,
respectively. Note that d¢/dn and ¢, acting as the density
functions for these potentials at the boundaries, determine
the potential field throughout the entire domain. Hence, the
general solution (5) should be applied at the boundaries in
order to determine the unknown values of ¢ and/or d¢/dn at
the boundaries.

Single-layer potentials are continuous in the entire
domain, including boundaries. However, double-layer
potentials are not continuous but suffer a jump [16].
Hence, if we define the function W(x) as the double-layer
potential by

W(x)= W% ﬂ [I(:—_))’])l +

-ng(y) dS,,

(x —2x,e, —y)]
|x —2x;e5 -yl

(10}
the jump condition can be expressed in the simple form

Wix) = 3¢(x) + W(x) (11}
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with x in the interior of V, and

We(x) = — $4(x) + W(x) (12)
with x in the exterior of ¥,

Here, Wi(x) and W*(x) denote the limiting values of
W(x) approached from inside and outside the domain ¥,
respectively. Also B°(x) denotes W(x) evaluated at x e 5.

It should be noted that the general integral Eq. (5) is of
fower order in spatial dimension than the original partial
differential Eq. (3) {i.e, surface integrals for a three-dimen-
sional probiem}. Often, the values of the potential density
functions, d¢/dn and ¢ , al the boundaries are the only
desired information. Hence, the boundary integral method
may be more efficient than a finite-difference method or a
finite-clement method, which requires solution of Eq. (3)
throughout the entire domain in order to evaluate the
potential and flux distributions at the boundaries.

2.2. Boundary Conditions

In each domain there are three types of boundaries: (1)
Dirichlet boundaries, where ¢ is specified; {2) Neumann
boundaries, where V¢ -n is specified; (3) common bound-
aries between two layers. The ground surface has the
Neumann boundary condition (V¢ - n=0), but the general
solution of Eq. (5) automatically satisfies the boundary con-
ditons at = =0 owing to the fundamental solution chosen.

The total current (f;) from an anode in layer 1 can be
written as a point source,

Iy
Sx) = =55 8(x — Xo). (13)

The superscript (1) of ¢ denotes the soil conductivity in
layer 1. The total current picked up on the well casing
should also be 7,

10=”i-ndsw. (14)

The integral is over the side surface of the well casing. At
the well casing side surface (S,,), two separate electrochemi-
cal processes occur: an anodic dissolution of the metal and
the corresponding reduction of electrolyte in the soil. As a
result of these reactions, the boundary conditions are
usually modeled by a nonlinear Tafel equation [177:

i-n= i*(ewr—m-—w)/ﬁa _ e—(¢r*¢w—¢‘)ﬂ"ﬂc)_ (15)
Here, ¢. and ¢,, are the potentials at the well casing surface
and in the formation next to the well casing, respectively.
The i*, ¢*, ., and B, are parameters describing the elec-
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trochemical kinetics. The boundary conditions given by
Eq. (15} are generally stiff due to exponential functions.

Because the weli casing 15 very long compared with its
diameter, the potential will change due to the resistivity of
the metal of the well casing. This potential change can be
convenienily expressed as

dg. _

—r=—R.3().

(16)

Here, R is the metal resistivity per unit length, and 3 is the
total current flowing up the casing at /,

3(;)=le J:ni-n ds... (17)

The L is the total length of the casing. It should be noted
that Eq.(16) approximates a two-dimensional surface
distribution of eletrical potential at the well casing with a
line distribution of potentials.
At the bottom surface of the well casing, the boundary
condition of no current flow applies:
n-Vg=0 for

XeS,. (18)

At the shared boundaries (S,) between two layers (ie.,

k and k+1), potential and normal current flux are
continuous,

¢,lk]=¢(k+l}, (19)

p®) R = —glEt D 1) {20)

Note that the direction of the exterior normal of layer
(k+ 1) is opposite to that of layer kL at S, .

3. NUMERICAL METHOD

When either Dirichlet or Neumann conditions are
specified at cach boundary, the governing integral equations
of the boundary element method can be numerically solved
by collocation for the unknown variables, ¢ or V, ¢. As dis-
cussed in the previous section, the current at the well casing
is a nonlinear function of the potential difference between
soil and well casing surface, and the total current flowing
onto the well casing should be identical to the totai current
emitted from the point source in layer 1. These nonlinear
boundary conditions and constraints obviously entail an
iterative numerical scheme to solve this problem. An
efficient numerical scheme, as a result, is derived for a model
with N, layers.
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3.1. A Collocation Method for Integral Equations

By the use of the jump conditions of potential double
layers at the boundary, Egs. (11)-(12), the integral equation
(5) s first reformulated for the unknown potentials or
potential gradients at the boundaries. Then, the equation is
solved by a zeroth-order coliocation technique (ie., con-
stant potential and potential gradients in a discrete grid).
Specifically, the boundary surfaces are divided into N
elements in layer & and the potential strengths (¢ and V, ¢)
are assumed constant within an element. The resulting
system of discretized equations becomes

1
2¢'fk)_ﬂ*5kq szo) (1) Z (k)v @“k)

—S VR, for k=1, N,
g

and  ij=1,.,N®, (21)
Here, the superscript (k) denotes the variable in layer &, the
subscripts / and j denote the grid points, & is a Kronecker

delta function, and

¢%'= ] 49x,.¥) 45, {22)

V.q®=[[V,a%x, y)-nds,,. (23)

The surface integrals of Eqgs. (22) and (23) are calcuiated by
a Gaussian quadrature method [18). When j=i, the
integrands become unbounded. In this case the surface is
subdivided into two regions, one of which is centered
around the singular point. The integration in this sub-
division is computed analytically [6, 9, 15].

The linear Eq. (21} can be concisely rewritten in a matrix
formulation,

A @ix) L gt ,Vn(ptk) =W

for k=1,.,N,.

{24)
At the shared boundaries (S,) between two layers {ie., k

and & 4+ 1), the continuity of potential and current are given
by

40 = g 03)
h+1) _ o'(k) 3
V.9 = (k+1) v,.¢! (26)

3.2. Boundary Conditions at the Well Casing

When the well casing surface is divided into N, grids in
the azimuthai direction and ¥, grids in the axial direction,



342 LEE,
it is convenient to represent the current and potential
around the well casing from all the layers by arrays i, and
vy (for m=1, ., Nyand n=1, .., N_}. The radius of the
well' casing is much smalier than the well length and the
conductivity of the well casing is generally large. Therefore,
the potential difference in the azimuthal direction on the
well casing surface is negligible. The potential on the well
casing surface is given as ¢¢ along the axial direction.
From Eqgs. (16) and (17), the potential at the well casing
surface can be easily computed as
R, Y 3,417, 27
mzf
=5 ¥

n=~N, m=1

b= 05—

® AST (28)

The ¢ is the potential at the bottom of the well casing; A7)
is the axial length of the grid at j=m; and 48", is the
surface area of the grid at (mmn).

Equations (14) and (15) can be given as constraints for
Eq. {24):

Z A8, im, =0, (29)

n=1 m=1
— (¥ (' S 9")iba
— e_(¢i’¢f’;n7¢‘)”’gf) = 0,

for m=1,..,Ngandn=1,.., N,

(30)

3.3, Iterative Schemes

The system of linear equations of (24) s solved with the
boundary conditions of (29) and {30). Due to the non-
linearity of boundary conditions, the foliowing iterative
algorithm is devised:

(i) Assume i (a uniform distribution) and ¢; (=0).
{ii) Solve Eq. (24) and determine the potential distribu-
tion in the formation near the well casing,

(ili) Calculate the current and potential distribution on
the well casing surface, 3; and ¢;, from Eqgs. (27) and (28).

(iv) Examine the constraint conditions of F\ and F, ,,,
as shown in Eqs. (29} and (30).

{v) Updatei,

To facilitate numerical convergence, a Newton-Raphson
method was derived from Egs. (29) and (30):

. and ¢§ and repeat from (ii) to (iv).

[ w swl[i41
—Ff=3 ASy, Aiyhi+n,

0y

(31)
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~FL, = i
6F2':
+ ©

6¢ f%z

oF; o 2%,
6@-",,,,,2

i,k 11 &

a¢n Ai w[r+1]+A¢8[f+l]]

w fils
6 Ilfz

4

g, (32)

Equations (31) and{(32) are a system of (NN, + 1) linear
equations for the [i+ 1]th updates of i}, and ¢;.

The Newton-Raphson iterations continue until the
normalized residual,

2, mn)2/NBNz’

(33)

becomes less than 10~ Owing to the linearity of Eq. (29),
FU1 remains zero during the iterations.

3.4. Linear Solver

In the process of iterations, Eq. (24) is solved repeatedly
with an updated right-hand side vector. Owing to the
shared boundaries between layers, the matrix becomes a
banded block matrix. Therefore, a Schur-complement-like
method was devised to solve the matrix efficiently. The
numerical algorithm is described in the Appendix.

4. NUMERICAL RESULTS

We first discuss the numericaj efficiency of the method
and then examine the effects of physical parameters on the
solution. The physical parameters for the base model are
listed in Table I, and the geometries of well casing models
are depicted in Fig. 2. Vertical casing models {Models A, B,
and C with single-, two-, and three-layered conductivities,
respectively) were mainly used to investigate the effects of

TABLE 1
Casing Geometry and Physical Properties

Casing length
Model A, B, C: L= 1240 [m]
Model D: L =94443 {m]
Casing radius, r,=0.08 [m]
Metal resistivity, R, =107 [/m]
Current source, Iy = 5 [4]
Location of current source, x, = (200, 0, 0.1) [m]
Electrochemical kinetics parameter, i * =0.004 [ 4/m?]
Electrochemical kinetics parameter, ¢* =07 [ V]
Electrochemical kinetics parameter, 8, =004 [V}
Electrochemical kinetics parameter, 8, =0.04 [
Soil conductivities [1/Qm]
Model A: '/ = 0.1
Models B and D: ¢ =0.0333, 6/ = 0.1
Model C: 'V =0.0333, 6% = 0.1, s =0.01
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FIG. 2. Model geometries.

conductivities of soil, well casing geometry, well casing
resistivity, and the location of a current source on the
current distribution at the welt casing. Model D was
included to demonstrate the importance of the current
source location for an arbitrarily deviated casing.

4.1. Numerical Efficiency and Convergence

The present numerical method consists of three major
parts: (1) the evaluation of potentials (calculation of matrix
clements}, (2} the LU decomposition of the matrix, and (3)
Newton—Raphson iterations to satisfy the nonlinear bound-
ary conditions at the well casing. When the casing remains
in the x-z plane, the plane symmetry reduces the matrix size

Mode! A
Model B
Modet C
Model D

2 b

Log { Normalized Residual }

3 F 5
1
5
\
LY
A
A
-4 | AN
LY
*
A
1)
*
5 1 1
0 12 14 18
No. of lterations
FIG. 3. Convergence of Newton—Raphson iterations,

by 50%. Moreover, if uniform grids are used in a vertical
casing, many matrix clement calculations can also be
eliminated due to the grid symmetry. As a result, we utilized
proper symmetry conditions to maximize numerical
efficiency.

The side surface of the casing was discretized by 4 x 20
elements, the bottom of the casing by 4 x 2 elements, and the
layer boundary by 8 x 8 elements. The CPU time required
on the VAXstation 3200 was 26.0 s for Model A, 93.7 s for
Model B, 156.6 s for Model C, and 99.4 s for Model D. The
plane symmetry was used for Model D, whereas both the
grid and plane symmetries were used for the other models.

In performing the Newton—-Raphson iterations to satisfy
the nonlinear boundary conditions, only the right-hand side

Current Density { A/ m?)

0.004 0.006 0.008 0.010 0012
0 T T T T

0.014

Depth {100 m)

10 F

14

FIG. 4. Current density distribution: Model A, x,= 200 m.
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vector of Eq. (24) has to be modified. Therefore, the itera-
tions can be achieved very effectively once the LU decom-
position of the matrix in Eq. (24) is stored. Figure 3 shows
the convergence rate of Newton—Raphson iterations for
Models A, B, C, and D. The initial estimate of {?, was a
uniform distribution. In the single-layered Model A, the
normalized residual decreased by five orders of magnitude
within eight iterations. In Modei C with very different layer
conductivities, the simple initial estimate of i), generated a
large error as shown in Fig. 3. Nevertheless, as the present
Newton-Raphson method revealed superlinear con-
vergence, the solution converged within 15 iterations,

4.2, Single-Layered Model (Model A)

The current source was located at xg= (200, 0, 0.1}[m]
in this single-layered model. The calculated current distribu-
tion along the well casing surface is shown in Fig. 4. The
current distribution was axisymmetric on the well casing
surface (minimal dependency on the azimuthal direction)
and reached a maximum at the top of the casing. The
current density changed between 0.00657 and 0.01226
[4/m*] along the axial direction of the casing. It became
gradually smaller along the axial direction, but slightly
increased again near the end of the casing. A similar end
effect has been shown by Dabkowski’s model [3], and was
also observed in flow in porous media [9].

Cuerent Density {A/m’ )

0.00 0.02 0.04 0.06 0.08
o T
2 =
0.04 0.08
T ¥
4 }
02 |
E 6 |
f=
(=1
£
o
5 0.4
a -
8 — B=m8
8=2mi8
..... 8=5m18
10 |
—— Sy
12
14
FIG. 5. Current density distribution: Medel A, x,=20m,
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The same modeli A with the current source at x,=
(20, 0, 0.1)[m] was considered. The simulation results were
depicted in Fig. 5. The current was mostly picked up at the
top portion of the casing and its distribution became less
uniform {0.0049-0.0691 [ A/m?]). The current distribution
at the top of the casing also showed a weak dependency on
the azimuthal direction.

Most previous models neglected the potential changes on
the metal surface because the metal conductivity is much
larger than that of soil. However, the electrochemical reac-
tions at the casing introduce stiff boundary conditions so
that even a minor potential difference in the metal casing
can significantly alter the current distribution. In Fig. 6,
the current distributions for the cases of R, (metal
resistivity/unit length)=10"% 107>, and 10~° [2/m] are
plotted. A high metal resistivity generates large potential
and current changes on the casing. Figure 6 shows that the
potential change in the casing due to the metal resistivity
cannot be neglected.

4.3. Two-gnd Three-Layered Models (Models B and C)

A soil formation often consists of multiple layers with
different conductivities. Because the numerical algorithm
was specifically derived to solve the electrical field for this
situation, it 18 instructive to examine how the current
distribution is altered due to a conductivity jump between
layers.

Current Density { A/ m®)

0.000 0.005 0.010 0.015 ¢.020 0.025
0 T T 1 T
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E 6 F
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a 8 |- !
; R, =10" (¥m
L]
i —  Ry=10°{Um
[}
i e B, =10°Qym
10 | :
[
H
i
i
12 F 5
14

FIG. 6. The effect of metal resistivity on current density: Model A
(one layer), xg =200 m.
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In Model B, the formation has two layers: the top layer

of 120 [m] thickness has conductivity o'V = 0.0333[1/2m],
and the second layer has the same conductivity as Model A,
¢® =0.1[1/Qm]. Figure 7 shows the current distribution
along the axial direction of the casing. The current distribu-
tion in the first layer is much smaller than that in the second
layer, and the current density jumps from 0.00586 to
0.01278 [ A/m?*] at the layer boundary. The current distribu-
tion in the second layer appears to be similar to that in the
single-layer model (i.e., a high current at the top and a
moderate increase at the end ).
In the three-layered model (Model C}, the layer boundaries
are located at 120 [m] and 580 [m] from the top plane sur-
face. The soil conductivities are 0.0333[1/2m] in layer 1,
0.1{1/Qm] in layer 2, and 0.011/2m] in layer 3. In this
case, most of the current is expected to be picked up in layer
2 because of its high conductivity, The simulation results are
shown in Fig. 8. Compared with Model B, the current den-
sity in layer 1 increased due to lower conducitivity in layer
3. The large contrast in soil conductivities between layers 2
and 3 apparently created the current density jump of 0.0116
[ A/m?] at the layer boundary.

4.4. A Deviated Casing in a Two-Layered Formation
(Model D)

The previous examples modeled a vertical casing in a
multilayered formation. To illustrate an efficient use of the

Current Density { A/ m’)

0.000 0.004 0.068 0.012 c.016

Depth (100 m)

14

FIG. 7. Current density distribution:
eV=0033, ¢ =01 (1/2m).

Model B (two layers),
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Current Density ( A/ m’)
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FI1G. 8. Current density distribution: Model € (three layers),
¢M=0.033, 5% =0.1, s¥ =001 (1/2 m).
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FIG. 9. Current density distribution: Model D (a deviated casing in
two layers), 6" =0.033, ¢'¥ = 0.1 (1/2 m).
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boundary element method for a casing of arbitrary
geometry, we designed 2 well casing that is vertical for the
first 120 [m] and then deviates in the x-y plane. The
schematic diagram is shown in Fig. 2. The layer conduc-
tivities are ¢/’ =0.0333 and ¢'@ = 0.1[1/2m].

Because this problem is not axisymmetric with respect to
the current source location, it is of particular interest to
examine its effect on the overall current distribution.
Figure 9 shows the current distribution of the three cases:
xg=1(200, 0, 0.1), (0, 200, 0.1), and (—200, 0, 0.1)[m]. The
source at (—200,0,0.1)[m] distributes current more
evenly than the other two cases and exhibits a minor jump
at the layer boundary. This numerical example of Modet D
clearly indicates that the current source location can
significantly affect the current distribution in a deviated well
casing.

5. CONCLUSIONS

A boundary element method was developed to study
cathodic protection of a well casing in a formation with
layered conductivities, Electrochemical reactions at the well
casing were modeled with a nonlinear Tafel equation [17].
The present formula employs a fundamental solution that
eliminates the discretization of the top ground surface. In
addition, the model included the potential change in the
axial direction of the casing surface due to the metal
resistivity. A Newton-Raphson method was employed to
satisfy the nonlinear boundary conditions at the weli
casing. Due to the superlinear convergence of the current
algorithm, most practical problems converged within 15
iterations.

Vertical and deviated casing models were constructed to
examine the effects of conductivities of soil, well casing
geometry, well casing resistivity, and the location of a
current source on the current distribution at the well casing.
Due to a high aspect ratio of the casing surface
(L/fr,= ~1000), simulation results confirmed a weak
dependency on the azimuthal direction of the current
distribution on the well casing. The maximum current
occurred at the top of the well casing and the current density
gradually became smaller along the axial direction, as is
found in actual measurements. Nevertheless, near the end of
the casing the current slightly increased (a similar end effect
was observed in flow in porous media [973). As the current
source was closely located to the casing, the current
distribution became less uniform and more current was
picked up at the top portion of the casing,

Although the metal conductivity is much larger than that
of soil, even a minor potential difference on the casing sur-
face can significantly alter the current distribution owing to
the stiff, nonlinear boundary conditions. Furthermore, as
the metal resistivity increases, the current distribution
becomes less uniform. In the formation with multi-layered
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resistivities, the current density suffered a jump at the layer
boundary. Most of the current was picked up at the casing
surface in the layer with a high conductivity, In a deviated
casing the location of the source was an important factor in
determining the current distribution.

APPENDIX: A SCHUR-COMPLEMENT-LIKE
METHOD FOR BANDED BLOCK MATRICES

A multilayered model generates a banded block matrix
due to the shared boundaries between layers. In this
Appendix, we derive a Schur-complement-like method to
solve this matrix efficiently; The matrix from a three-layered
model is

Ay A A, 0 0 0 0

0 Ay Ay Ay An Ay 0

0 0 0 0 Ay, Ay As
Xll
X,
Xn By

x| Xz )=\ B: {al)
X23 B3
X32
X33

When the number of grid points on the well casing in layer
i is NP, and the shared boundary between layers { and
{i+ 1) is discretized by NO, grids, the total number of grids
in layer i/ becomes N,=NP,+ NO;+NO,_,. Then the
dimensions of A,, 4., |, A;;,,, 4,, and A4, become
(N;xNP)), (N;xNO,_,), (N;xNO,), (N;xNO,;_;), and
(N;x NO,), respectively. For simplicity of notation, we
define square matrices as

A=(4y, 412),

Ay =(4y, Az, Az), A3=(A3,, A33),

(a2)

and group the variables as

Xy,
X b'¢
X,E<X“), Y.={x, |, XJE(X”). (a3)
12 X23 33

We further define two matrices that are a combination of an
identity matrix and a null matrix:

(ad)
(a5)

J,= [Ozvo,-x (Ni— NO,)» INo,],

K= [INo,-,p ONo,-,, x (N.-fwo,-ﬂ)]-
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Here, 1, is the m x n identity matrix, and O,,,, is the mxn
null matrix.

From Egs. (al}-(a3), the system of linear equations can
be more concisely expressed as

A X +A,,X, =8B, (ab)
AzaX12+A2X2+A2bX32=B2, (3.7)
ApXn+A;X;=8B;. (a8)

Equation (a6) can be rearranged to solve for X, as
X1=—A1_1A”,X21+A1_1B1. (39}

The X, that is a subset of X| can be conveniently expressed
with J, and Eq. (a%),

Xp=J X,=—J A7 "4, X, +J, AT'B,.  (al0)
Substituting (210} into (a7}, we obtain
Ay Xo+ Ay Xyo=8B,. (all)
Here,
Ay= —K, A, J AT A1 + 4, (al2)
B,=B,—A,,J,A7'B,. {al3)
Equation {all) can be rearraned to solve for X, as
Xo=—A;"43, X5, + A7'B, (al4)
and X,; becomes
Xoy=J1X,= -1 A;' A, X+, A7'B,.  (al5)
Finally, substituting (al5) into {a8), we obtain
X;=A47'8,, (alé)
where
Ay= — K3 A3, 0,45 45+ A5, (al7}
By=B,-A,,J,A7'B,. (al8)
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The numerical algorithm can be summarized as follows.
First, the LU decomposition of 4, is evaluated and then
A7'A,,, and A7 ' B, are calculated. Second, A, and B, are
computed from Egs. (a12) and (al3). After decomposing 4,
into LU triangular matrices, 4, and B are readily com-
puted from Egs. (al7) and (al18). Then X,, X, and X are
sequentially evaluated from Eqs. (al6), (al4), and (a9).
Even though this Appendix discussed a method for a
three-layered model, the same aigorithm can be straight-
forwardly extended to a model with any number of layers.
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